Research Statement

My research goal is to bridge physical principles with computer vision. | pursue this goal
through the knowledge from computational photography, leveraging physical image formation
models to enhance visual perception and reconstruction under diverse real-world conditions. In
recent years, with the rapid advancement of foundation models and large-scale datasets, researchers
have provided remarkable answers to the question of “What can images do?”. Alongside the
development of various 2D and 3D computer vision tasks, these advances have profoundly transformed
our daily lives (e.g., autonomous driving, scene surveillance, smart healthcare). Meanwhile, the
classical yet profound concept of computational photography has been increasingly focused on another
fundamental question: “Where do images come from?”’

The answer is light. Computational photography encompasses the entire process by which
light interacts with a scene (e.g., reflection, refraction, scattering), passes through the camera imaging
system (e.g., lens, point spread function (PSF), image signal processor (ISP)), and ultimately forms
the final output image. In this area, mature camera and smartphone manufacturers have developed
complete processing pipelines to achieve superior generated image quality, thus satisfying human
visual perception. In my view, computational photography not only enhances image quality but
also provides physically consistent cues, which are crucial for reliable performance in downstream
vision tasks such as object detection, semantic segmentation, and 3D reconstruction. This is
especially useful under diverse real-world conditions, including varying illumination, weather, and
data degradations (e.g., noise, blur). In other words, leveraging the knowledge of computational
photography can improve the robustness of computer vision.

In this direction, | have made extensive efforts and explorations, which include: (i). developing
physics-based data augmentation to enhance computer vision robustness [1; 2; 3; 4], (ii). leveraging
camera RAW data—the original sensor response prior to RGB—for enhanced visual performance [5;
6; 7], and (iii). toward an understanding of 3D physical world with the 3D vision techniques (e.g.,
multi-view generation and synthesis) [8; 9; 10]. In the future, | envision building interdisciplinary
collaborations with researchers in fields such as robotics, electrical engineering, and optics, as well as
with scholars in the social sciences, including sociology, economics, and anthropology. By bridging
hardware design with physics-based vision, | aim to establish a research agenda that not only advances
core scientific understanding but also creates real-world impact with long-term benefits for society.

My research on leveraging computational photography for real-world downstream tasks began in
mid-2020, at a time when most studies were focused on designing better low-level image restoration
models to enhance human visual perception (e.g., super-resolution, denoising, low-light image
enhancement). However, these works often overlooked whether such low-level algorithms could
improve performance on real-world high-level vision tasks, such as object detection.

In this way, my first study [1] focuses on low-light conditions object detection, as challenging light-
ing environments can significantly degrade high-level visual perception. | discovered that even the state-
of-the-art (SOTA) low-light image enhancement algorithms at the time failed to improve object detec-
tion performance in nighttime scenes; in many cases, they even proved counterproductive (see Fig. 1).
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noise, and blur, and designing a composite aug- Figure 1: Our studies [1; 2] demonstrate that state-
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and detection framework. Together, these ap- methods generally cannot improve performance on high-
proaches yielded detectors with significantly im- level vision tasks; in some cases, they adversely affect
proved robustness under real-world corruptions. ©object detection accuracy.

Beyond high-level vision robustness, | also explore light-weight model design for real cameras and edge
devices. Capturing high-quality images under diverse lighting remains difficult due to natural factors
(e.g., low light) and camera exposure. In [3], | proposed the lllumination Adaptive Transformer (IAT),
a 90K-parameter model combining global and local branches for low-light enhancement, retouching,
and exposure correction—Ilater the most cited paper of BMVC 2022. More recently, | introduced
Image-Adaptive Cartesian coordinates (IAC) [4], which unify curve- and 3D LUT-based methods by
learning image-specific coordinates, enabling faster and more efficient enhancement than IAT.

Building on the understanding that vision models need physically accurate inputs, | shifted my
focus to the source: camera RAW data. As the original sensor readout before any non-linear
camera ISP processing (see Fig. 2), RAW images preserve abundant details for a more faithful scene
representation. Compared with normally used 8-bit sSRGB data, they also feature a higher bit depth
(e.g., 14- or 16-bit), a wider color gamut, and structured noise, maintaining a linear relationship with
scene irradiance. A key drawback is their larger storage requirement. As a result, RAW datasets
(which often contain only thousands of images) are typically much smaller than sRGB datasets.
To tackle this issue, RAW-Adapter [5] employs adapter tuning to leverage the knowledge-rich
pre-trained sSRGB models while using the information-rich camera RAW data as input. Specifically, it
adopts a dual-adapter design, consisting of an input-level adapter (comprising learnable ISP stages)
and a model-level adapter. In [5], we demonstrate the potential of camera RAW data under various
lighting conditions. In the extension work [6], we further propose RAW-Bench, a new benchmark
that includes 17 types of degradation conditions—such as those related to lightness, weather, and
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Figure 2: Beyond RGB, RAW-Adapter [5] directly uses camera RAW data for visual perception.

imaging—to further evaluate the capabilities of RAW data in real-world computer vision.

Additionally, our recent work [7] further explores the potential of camera RAW data across
multiple vision tasks, including object detection, semantic segmentation, instance segmentation, and
pose estimation. We propose a more efficient tuning strategy that achieves superior performance to
RAW-Adapter by training only 10%-20% of the parameters.

Beyond my work on 2D vision, | have increasingly focused on 3D vision as a means to model natural
phenomena in the physical world. Recent advances such as neural radiance fields (NeRF) and 3D
Gaussian Splatting (3DGS) have greatly facilitated 3D representation and reconstruction, making
them more accessible for practical applications, opening broad opportunities in applications like
virtual/augmented reality and autonomous driving.

In Aleth-NeRF [8], we draw an analogy between NeRF's rendering process and the ancient Greek
emission theory, introducing the concept of a “concealing field” to explain darkness in 3D space
and releasing the first multi-view dataset for low-light and overexposure scenarios. Building on this,
I2-NeRF [10] proposes a novel framework that enhances isometric and isotropic metric perception
under media degradation, we further present a general radiative formulation that unifies emission,
absorption, and scattering under the Beer—Lambert law, extending naturally to environments
such as underwater, haze, and low-light scenes. Most recently, Luminance-GS [9] adopts a curve-
adjustment strategy, using view-adaptive curves to map multi-view images under varying illumination
into physically consistent 3D reconstructions.

Building on my research in physics-based vision and robustness, | plan to extend my work toward
bridging computational photography with embodied Al and robotic perception, an area that
is progressing rapidly and poised for long-term impact. Similar to computer vision, camera-based
robotic perception also suffers from lighting and weather degradations, and in even more extreme
scenarios such as polar environments or planetary exploration (e.g., Mars).

To this end, the key directions may include: @ Lighting-Adaptive Visual Policies: Integrate
lightweight image processing models into robotic control loops for real-time adaptation to extreme
photometric variations (e.g., glare, overexposure) during navigation and manipulation. @ Robot-
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Figure 3: My research forms a series of works aimed at understanding the 3D physical world. Aleth-NeRF [8]
models changes in lightness in 3D by introducing the concept of a “concealing field.” 12-NeRF [10] integrates
two physical principles—isometry and isotropy—into the neural radiance field. And Luminance-GS [9] focuses
on fundamental curve adjustments to handle a wide range of real-world challenging lighting conditions.

Perception with camera RAW Data: Exploit the high dynamic range and linearity of camera RAW
data to achieve superior robustness for high-speed robotic tasks. ® Physically Faithful Sim2Real
Transfer: Leverage our 3D physical world models to create high-fidelity simulators that enable
seamless and reliable policy transfer from simulation to real robots.

| will pioneer task-specific camera designs through cross-disciplinary collaboration with optics and elec-
tronics experts. The ECCV 2024 Best Paper, “Minimalist Vision with Freeform Pixels,” [11] presents
a promising pathway from camera design to vision algorithms. | hope to develop programmable ISPs
optimized for high-level vision tasks and create lightweight, low-power imaging systems for vision
and robots, establishing a new paradigm for hardware-software co-design.

Building on my work in neural rendering (Aleth-NeRF [8], Luminance-GS [9], 12-NeRF [10]), | will
develop more interpretable and physically grounded 3D world models. This includes designing
differentiable rendering frameworks that unify light transport phenomena (e.g., scattering, absorption)
and embedding explicit material and lighting properties into neural representations. The goal is to
enable robust applications in autonomous driving, virtual reality, and environmental sensing under
complex real-world conditions.
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